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CMU Auton Lab: Research and applications

= Central topic of our research: = Working on 10+ sponsored
scalable, self-adaptive analytic projects. Current and past

systems with real-life impact funding from NSF, DARPA, DHS,
_ — DoD, HSARPA, IARPA, NASA,
USDA, CDC, FDA, IDRC, a few
Fortune 100 companies, and a
number of smaller corporate &
academic sponsors and partners

= Qur deliverables:

— Algorithms for fast and
scalable statistical machine

. learning and analytics
= 20+ people: 2 regular+3 affiliated — Software for embedding in
faculty, 2 post-docs, 8 analysts production systems
and programmers, 10 graduate - Software available for
students; + interns; led by Artur download at www.autonlab.org

Dubrawski and Jeff Schneider A
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Astrophysics

Public halth surveillance




Bottom Line Up Front

© we can develop and deploy societally-beneficial
analytic systems

But, how to sustain them in a long term?
-> Still looking for exact answers...

Three examples from Healthcare Informatics:

« Different target applications:
Public Health, Food Safety, Clinical Care

« At different stages in their lifetime
Know-how - Show-how - Use-how -> Sustain-how

« All rely on the same type of enabling technology

Cached sufficient statistics data structures that facilitate massive-scale
comprehensive searches for patterns in large sets of multi-dimensional data
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@ Fragment of a multidimensional record of disease cases:
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Challenges:

- Complexity and multiplicity of potentially interesting patterns

- Can epidemiologists afford monitoring of all possible subpopulations?
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The concept of Massive Screening
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e Example: Reports
of bloody stools
among preschool
children in the
Midwest almost
doubled starting
In September
2007

How do we
evaluate this as a
potential alert?

We want to score
them all and
produce a ranking
list...
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Temporal Scan

One of applicable detectors of

temporal anomalies (familiar reference target time
alternative: CuSum): time window window
1.Create a 2x2 contingency table (56 days) (14 days)
2.Perform a Fisher’s exact test N\ !
square test [z
target time series 2
(bloody stools in et Y
children in the
Midwest) ]
Clanoaa o] |
o M
. ) . ] Current Query 2 o |f1 i T
baseline time series ¢ml ||| |||| | |
(all patient visits) o ||u|| 'ﬂ w' U 'J |
1,000 A I
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Evaluating a potential detection

reference target

target 14K 6K

baseline 300K 70K

p-value < 10-2°

target time series
(bloody stools in
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Midwest)

reference target time
time window window
(56 days) (14 days)
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Plugging-in the spatial context:

e Consider the cross-product of every possible region with every
possible target query on attributes

e How many regions are there?
e All subsets of locations: O(2")
e All rectangular regions: O(n%)
v"All locations plus up to k of their nearest neighbors: O(nk)

e Use the 2 x 2 contingency table statistics

Report the results sorted in order of p-value

e SO0 many hypotheses to test...
e Can we afford computing everything?
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- Pre-compute key statistics about data ahead of its extensive
analyses in order to amortize the bulk of the costs of future
computations

Example: Using Contingency Tables to represent categorical data

* Mining categorical data is very often all about counting (co-)occurrences
» Precomputing counts makes the future costs of analyses independent on the data size
 E[ P(CricketFan]Indian) ] =

= NumberOf(Indian CricketFans)/NumberOf(Indians)

T W
Raw data o 5
Indian? |[Flyfisher?[CricketFan? <= = .
%) n |1an Yy IZ er rc el an O/)O/f :é é COntIngenCy
S 0 1 0 S S, T TS table
8 0 1 1 4’@6(\ /7\\7
Y 0 0 1 G/;\\ / 1 2
N 1 1 1 0 0 1
% 0 1 1 | /
L 1 1 Indian=0 }
. o — 0 0
M=3 Attributes Indian=1 Aut
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Plausible idea: Replace raw data with sufficient statistics

- Pre-compute key statistics about data ahead of its extensive
analyses in order to amortize the bulk of the costs of future
computations

Example: Using Contingency Tables to represent categorical data

Complaint:
Contingency Tables can reach enormous sizes (numbers of
cells) if the underlying data is highly dimensional and if the
Involved variables can assume many different values

Raw data y
Indian? [Flyfisher?|CricketFan? - ]
% f n |1an Yy ISO er ric el an O/}O’f‘ é Contmgency
é 0 1 0 0’76,{, @5%/) o table
0 1 1 Q >
(b} R AN
Y < 0 0 1 < 7 / 1 / 2
I~ 1 1 1 =
4 0 1 1 0 L/
S L L Indian=0 2
: 0 0 /
M=3 Attributes Indian=1 Aut o
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Monitoring Public Health Crises

INn Developing Countries
using T-Cube Web Interface

DETECT

]
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v' Affordable setup and B £ Hr | '; v' Rapid response and
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v' Reliable advanced analytics & Intuitive, highly interactive interface
v' Automation of routine screenings & Support of manual evaluations by human experts
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= Dengue fever outbreaks in Sri-Lanka in
2009 and 2010 are thought to be the
worst in history

= The one in 2009 amounted to 35,007
cases and 346 deaths

= TCWI would have issued warnings in
early 2009 about that year event, when
dengue cases just began to escalate, and
it would have continued to issue alerts
through the outbreak period. Early
warning would have given health
officials more time to prepare response
and to mitigate consequences

Carnegie Mellon
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Example: Leptospirosis in Sri-Lanka
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Our spatial scan analysis of Leptospirosis
counts in mid 2008 and late 2009 revealed
spatial clusters

This type of insight could hardly be obtained
using traditional data collection and analysis

methods Au _[;B
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TCWI: Dynamic spatio-temporal visualization

Real-time spatial
and temporal
visualization of
large-scale data

Highly
interactive user
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Disease data collected from Kurunegala district in Sri Lanka analyzed

and visualized using TCWI
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Ability to monitor all diseases and syndromes

« Real-Time Biosurveillance Program data collection and analytic
capabilities allow to monitor many more diseases than before

 Reported signs and symptoms enable syndromic surveillance

« The data collected may contribute to research of emerging, non-
notifiable, as well as chronic diseases

Example: Hypertension in Sri-Lanka: A gender division pattern

« Hypertension appears to

0 be 2-3 times more
y prevalent in female than

15 — i in male patients
1.0 - -
s « RTBP data and statistical
0.0 _ _ analysis capabilities
Dec-2009  Jan-2010 Feb-2010 Mar-2010  Apr-2010 May-2010 Jun-2010 w2010 Aug-2010 .
Blue: all patient visits Red: Hypertension cases support makmg such

Female/male ratio based on data from RTBP discoveries
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Additional benefits

Qualitatively better timeliness of reporting and analysis

« Information updated daily as opposite to monthly+

Higher level of detail

« Case-level information vs. weekly-by-disease aggregates

Maintainability and cost-effectiveness

« RTBP relies on widely available inexpensive mobile technology
« Service of these phones is readily available even in rural areas

« Total costs of operation are
lower than with the currently
used paper-based notifiable
disease reporting systems

e 509 and 30%0 cost avoidance
attainable respectively in India
and Sri Lanka
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Fundamental motivation: Fighting food-borne diseases

e Burden on societies and economies worldwide
In the USA: 76 million cases, 320,000 hospitalizations and 5,000 deaths each year

e Some cases are attributable to preventable contamination of food

e Sometimes evidence can be found in routinely collected data, e.g.:
— Records of microbial testing of samples of food taken at food factories
— Results of regulatory inspections of food facilities
— Results of monitoring health of animals arriving at slaughter houses
— ...etc.

e Data like that can be analyzed to:
— Detect adverse events
— Support post-event investigations
— Survey pathways of pathogen transmission
— Assess effectiveness of countermeasures
— Assess risk and reallocate resources to proactively address threats
etc
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Interactive analyses and visualizations of multiple data

streams usino

USDA Food
Sampling Data

About 150,000
records related to
Salmonella
across 3 years

Daily, transactional
temporal resolution

Spatial resolution by
unique
establishment

Key attributes:
test result (positive,
negative), serotype,

PFGE pattern, antibiotic

resistance pattern,
product type,
establishment

production profile

T-Cube Web Interface (for USDA

CDC PulseNet
Human lllness Data

United States of America

About 100,000
records
related to
Salmonella
across 3 years

Daily, transactional

—esmmm  Lemporal resolution

0 R4 mal U0 S8 A

000

e Spatial resolution
| — by state
D—
¢ Key attributes:
()

serotype, PFGE
pattern , outbreak ID
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Tummy = CRESGR = B

Jan32es

Certain statistics such as

moving average are
computed/updated on-the-fly :

Carnegie Mellon

Color coding is used to show

: : make visualization
multiple categories of data

interactive
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Example of a successful detection of a pattern of a

notential linkage between human illness and food suppl

e

o
»

z
<
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I United States of America

Human health data
contained a cluster of
human cases of
salmonellosis for which
microbiological tests
identified the same PFGE
pattern

After correlating that data
against records of

oos 1w e microbial sampling of
: food at food factories,
Est. A Establishment A was
1272005 found to report positives
Y= with a similar PFGE
\ - Immediately prior to the
i ar Apr.2007 Juliﬂﬂ?l (|}|: ttttt 12}31«‘2““? emergence Of human
| 15312005 cluster
.. JI||. =y O :
L, | It was located in the same
| } geographic area as the
4 i Jan-2007 Apr200T Jurpoar D 2007 12311’2“0?
human cases
Avfey
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Third application: Bed-side informatics

Motivation:

 Medical personnel more prone to making mistakes
when on the rush

Ideas:

* Leverage routinely collected data to identify leading
Indicators of emerging health crises

« Use them to issue early warnings, giving medical
personnel more time to respond

Test environment:

* Intensive Care Unit (1CU)

« Vital signs (heart rate, ECG, oxygen intake, ...)
» Collected at high frequencies (125 Hz in our case)
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Preparation of data

1. Each signhal segmented into two-second disjoint frames

2. Each frame correlated with the presence or absence of a crisis

3. Negative examples used to learn the NULL model

¥ital Signal

Alerl

[ S|

-|4n

Carnegie Mellon

Wilal Siynal

Alert

Excluded for |
training

.nu i % /) I '-___.I

- nﬂ

T4
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Learning the model

1. Perform Fourier Transform on each negative example to obtain
Its spectral representation

2. Learn Principal Component (PCA) model for spectral data

v' This model reflects the expected spectral profile of a non-
critical health status

NULL Model

Spectral image representing

Signal during

" . Fourier of the non- Phase info )
non-critical time " . signal under
Transform critical time removed "
frames frames non-critical
health conditions
Vital Signal Vital SIﬂil
|
|
B | PCA
o Model
T4 Ll
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Extracting potential indicators

Consider a set of patients separate from training data

Segment their signals, perform Fourier transform, project

onto principal components of the learned NULL model

1.

2.

3. Use a Control Chart (e.g.
CuSum or Temporal Scan)
to identify significant
exceedences of the
observed signal w.r.t.
expected magnitudes of
its principal components

4. Hypothesize that any

such exceedence can be
indicative of an upcoming
heath crisis

Carnegie Mellon
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Example result

CuSum Events (INC type) in 9th Principle Component of ABP Signal
preceding Tachycardia Alerts

T T T T T T
£ Moving average frequency
& 1t = of these exceedences
=
=
=
%
“ |:| | | | 1 |
0 10 20 0 40 500 B 70
|5 Tachycardia
: events we —
] -
= are tryl_ng
Z to predict
i
I:I | | 1 1 |
0 10 20 30 40 50 B0 70
Time (in Hours)
Observation:

Frequency of detected exceedences of this particular type visibly
Increases a few hours prior to onset of Tachycardia events
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Lift = P( Outcome | Evidence )/P( Outcome )

We try multiple combinations of parameters (window widths,
offsets, principal components, signals) to identify which
exceedences precede health crises with statistical regularity

- Several thousand trials per signal (scalability is a must!)

Principal CuSum : Ev_idence Ou_tcome Offset
Component Ul Threshold Elin: (€1 W_mdow W_mdow (Minutes)
(Minutes) (Minutes)
> Up 3 (1.45682.264) 15 45 15
9 Up 3 (1.9§é1§.%81) 30 15 60
> Up ! (1.731151.%979) 60 60 60
9 Up 3 (1.83:,32103%28) 45 15 60
1 Down 3 N 5 45 15 60
1 Down 3 252572%59) 45 30 60

A sample of significant results from the Lift Analysis of Arterial Blood
Pressure (ABP) for a set of patients experiencing episodes of Tachycardia
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More example results

« This graph depicts observed Lift as a function of offset between
the evidence and outcome windows (for one of the principal
components)

« Lift peaks at above 3.0 around 2.5 to 3 hours ahead of
Tachycardia episodes

Lift “alue with varying offsets for Sth Principle Component of ABP for Tachycardia Alerts

l_"r T T T T T T T T T
Upper C.1 of Lift
5 Lift _
i Lower C.1. of Lift [] Evidence
Window:
45 minutes
- Outcome
E Window:
45 minutes
|:| 1 1 | 1 | | | | 1
u| 0.5 1 1.5 2 2.5 3 3.5 4 45 5
Offset =
Carnegie Mell - - Aufs
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Conclusion

© we can develop and deploy societally-beneficial
analytic systems

v We have seen examples in many domains,
including Healthcare Informatics

But, how to ensure their long term sustainment...
- Organically public ownership model?
- Public-private partnership?
- Commercial service delivered to the public sector?

2.7

Cﬂrﬂegie Mell()[] Slide 29 Copyright © 2011 by CMU Auton Lab Aut;g



Comprehensive Environment for Health Surveillance

Objectives?
1. To study:

» All conceivable sources of information

 All conceivable modalities for data acquisition

» All conceivable usage modalities

Public health / Epidemiology / Environmental medicine
Chronic / Emerging diseases

Clinical Health Care
Food / Agriculture

2. To develop:

» Analytics capable of delivering useful information in the most palatable manner
* Principled, scalable infrastructure to ensure comprehensiveness of solutions

« Pathways to deployment (technical, policy, culture aspects)

Carnegie Mellon
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